
Selection of Methodology for Representing a Domain
Theory

Automatic Software Code Generator
Deliverable A1

Nicolas F. Rouquette

DS1 Background
Deep-Space One is the first JPL spacecraft to use large-scale automatic software code-generation
techniques on a large scale to produce the fault-protection software of the spacecraft.1 The code-generation
techniques used on DS1 consist in separates two types of design knowledge. One kind of knowledge
describes artifacts about the DS1 spacecraft and the fault protection requirements, we generically refer to it
as domain knowledge; examples include specific fault-protection designs such as protection against attitude
control error, command loss, battery low-state of charge, inertial reference loss, etc. The second kind of
knowledge describes the generic software architecture principles and designs selected to support any and
all fault protection designs such as initialization, storage of parameters in non-volatile memory (EEPROM),
ground parameter update commands, execution of a fault response, detection of a fault condition, etc… The
task of the automatic code-generation process then consists in applying the domain-independent principles
of software architecture and organization to the domain-specific requirements of fault-protection design
and capability.
To meet the very tight schedule of the DS1 project, the code-generation mechanisms were deliberately kept
flexible to accommodate new requirements and constraints as the project evolved. Domain-independent
software architecture designs and principles were described in terms of software templates. Without code-
generation, the fault-protection software would be embodied in a set of files, each written by hand. The
idea of a software template is to find similarities among all of the product's software files at the level of
software organization and architecture. Files with similar organization and architecture are then grouped
and their domain-specific aspects are generalized into domain description properties (e.g., replace
properties such as 'red' and 'green', with a generic property 'color'). Instead of doing this generalization
after-the-fact, the challenge of DS1 fault-protection was to design the generic templates up-front, apply
them to the on-going current version of the domain-specific design and requirements and see how well the
generated code meets the product and software requirements.

Code Generation Complexity
Throughout the project, a substantial number of modifications were made to the code generator per-se.
Each modification made can be traced to one of two issues: either a discrepancy with respect to new or
changed requirements about software architecture and organization; or new end-product requirements
necessitating taking into account new design information. The compound effect of such changes resulted in
a very complex code-generator, one that violates the original idea of decoupling domain-specific fault-
protection knowledge from domain-independent architectural & organizational knowledge.
Analyzing how support for telemetry was added to the code generator is a good illustrative example of how
complexity built-up throughout the project. The fault-protection software includes a collection of objects
known as monitors. The purpose of each monitor is to passively observe a stream of real-time data and to
make a decision when a symptom of some anomaly is present in the data. To do so, a monitor maintains a
number of state variables that are typically used to characterize properties about the data stream history up
to the present. Initially, telemetry was considered to be a simple, passive observational account of monitor
state variables. When support for telemetry was finally introduced in the code, new requirements suddenly
crept in through analysis. In nominal cruise, the spacecraft is scheduled to spend up to 6 days of unattended
thrust. To provide visibility into abnormal events that might occur during that time, the design of the

1 The DS1 flight software comprises several large modules for attitude control, autonomous navigation,
flight systems control (including the ion-propulsion drive) and system-level fault protection. The last
module is the largest of all in terms of the binary code stored on the flight computer.

monitor telemetry was expanded to include water marks and several statistics measures defined to
summarize the outcome of decisions made regarding the degree of abnormality in the raw data. Although
the concept of telemetry is simple, the code generator had to be expanded to make several software
inferences including change data propagation (e.g., telemetry is updated after a variable is updated,
wherever this update may occur), and type inference (e.g., what are the possible outcomes of a decision-
making function). The net result is that defining something like telemetry requires additional derived
knowledge about the software itself and how it is built and this is clearly beyond the scope of simple
syntactic replacement of generic property references by domain-specific values.

Capturing Domain Information in a Model Database
We believe that the notion of separating domain-specific design knowledge and domain-independent
knowledge about software architecture and organization is still a sound idea, although it is now clear that
carrying it through is a technically challenging task. The problem about adding telemetry support in DS1
demonstrates the need for making inferences during code generation. Many other problems pertaining to
software integration and maintenance can be traced to dependency management. Any generated file has a
dependency on all the sources of information used in the code-generation process; therefore, we need to
know when a change made somewhere potentially affects a generated product and therefore warrants
analysis and possibly re-generation.
Aspects of dependency management and knowledge compilation indicate the need for a database-
management approach to domain-specific design information. This approach entails modeling the domain
into a database schema and populating the database with actual instances of domain objects. Once all
relevant domain information is captured in a database, the problem of dependency management can be
readily addressed by including in the database the appropriate dependency information. From a database
standpoint, the code-generation process involves querying the database for the attributes and properties of
the domain necessary to perform the necessary generic property replacement in a software template.
Similarly, the inference processes mentioned above have database counterparts as a database query feeding
an information engine whose results are stored back in the database for inferences or code-generation
processing. This latter aspect of information processing implies the definition of inference rules to define
what domain knowledge will be combined and how this combination will take place to derive inferences
about the domain. This means that the domain is not only modeled in terms of a static schema of properties
and relation but also in terms of a theory about relationships among the elements of the domain.
This database-driven strategy for code-generation and inferencing appears sufficiently sound to select a
modeling tool to support all of the above-mentioned processes. This choice is important since our customer,
the X2000 initiative at JPL, is also considering the use of models, at least, for review purposes. There are a
large number of research efforts to define modeling paradigms and domain theories for the purpose of
mechanizing inferences, dependency management and code-generation (e.g., from Artificial Intelligence
research) and for the purpose of code generation (e.g., from Software Engineering research). So make a
relevant research product to our customer and potential customers, we chose to settle on a modeling
approach based on the Unified Modeling Language (UML) because of its unprecedented broad industry,
research, and tool support. Rational Corp. is one of the champions of UML and has committed a lot of
resources in developing and supporting tools for applying UML in the context of modeling, code
generation, reverse engineering, round-trip engineering processes, requirements engineering, project
planning, and testing. Consequently, we chose to use Rational Rose and its associated tools to provide the
modeling support we need to carry out this project.

Modeling a Domain Theory
 Rational Rose provides a flexible modeling environment, where we define the domain-independent
software architecture and organization on one hand and the domain-specific schemata of information on the
other. In the course of the project, we will define what aspects of the domain theory can be captured in this
tool and which others require extending the tool. As it stands, Rational Rose supports modeling of use
cases, scenarios describing what the modeled artifact is supposed to do and logical categories, detailed
descriptions of the structure and organization of how the artifact will achieved what it is supposed and
expected to do.
We plan to apply this modeling framework in the following manner:

- describe in terms of use cases what mechanisms the software architecture is supposed to provide
- describe in terms of logical design packages of class information what domain-specific information is

needed to characterize specific fault-protection requirements, knowledge and design
- describe in terms of logical design packages the processes whereby domain-specific information is

applied according to the use cases to generate domain-specific fault-protection software, documents,
reports, etc..

Things to come
The next delivery will address a case-study of a domain-theory describing a subset of the DS1 fault-
protection design.

Contributors for this deliverable
Nicolas Rouquette
Julia Dunphy

